3.2.89 \(\int (d+e x^2) \cot ^{-1}(a x) \log (c x^n) \, dx\) [189]

3.2.89.1 Optimal result
3.2.89.2 Mathematica [A] (verified)
3.2.89.3 Rubi [A] (verified)
3.2.89.4 Maple [C] (warning: unable to verify)
3.2.89.5 Fricas [F]
3.2.89.6 Sympy [A] (verification not implemented)
3.2.89.7 Maxima [F]
3.2.89.8 Giac [F]
3.2.89.9 Mupad [F(-1)]

3.2.89.1 Optimal result

Integrand size = 18, antiderivative size = 182 \[ \int \left (d+e x^2\right ) \cot ^{-1}(a x) \log \left (c x^n\right ) \, dx=-\frac {5 e n x^2}{36 a}-d n x \cot ^{-1}(a x)-\frac {1}{9} e n x^3 \cot ^{-1}(a x)+\frac {e x^2 \log \left (c x^n\right )}{6 a}+d x \cot ^{-1}(a x) \log \left (c x^n\right )+\frac {1}{3} e x^3 \cot ^{-1}(a x) \log \left (c x^n\right )-\frac {d n \log \left (1+a^2 x^2\right )}{2 a}+\frac {e n \log \left (1+a^2 x^2\right )}{18 a^3}+\frac {\left (3 a^2 d-e\right ) \log \left (c x^n\right ) \log \left (1+a^2 x^2\right )}{6 a^3}+\frac {\left (3 a^2 d-e\right ) n \operatorname {PolyLog}\left (2,-a^2 x^2\right )}{12 a^3} \]

output
-5/36*e*n*x^2/a-d*n*x*arccot(a*x)-1/9*e*n*x^3*arccot(a*x)+1/6*e*x^2*ln(c*x 
^n)/a+d*x*arccot(a*x)*ln(c*x^n)+1/3*e*x^3*arccot(a*x)*ln(c*x^n)-1/2*d*n*ln 
(a^2*x^2+1)/a+1/18*e*n*ln(a^2*x^2+1)/a^3+1/6*(3*a^2*d-e)*ln(c*x^n)*ln(a^2* 
x^2+1)/a^3+1/12*(3*a^2*d-e)*n*polylog(2,-a^2*x^2)/a^3
 
3.2.89.2 Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 178, normalized size of antiderivative = 0.98 \[ \int \left (d+e x^2\right ) \cot ^{-1}(a x) \log \left (c x^n\right ) \, dx=\frac {-5 a^2 e n x^2+36 a^2 d n \log \left (\frac {1}{a \sqrt {1+\frac {1}{a^2 x^2}} x}\right )+6 a^2 e x^2 \log \left (c x^n\right )-4 a^3 x \cot ^{-1}(a x) \left (n \left (9 d+e x^2\right )-3 \left (3 d+e x^2\right ) \log \left (c x^n\right )\right )+2 e n \log \left (1+a^2 x^2\right )+18 a^2 d \log \left (c x^n\right ) \log \left (1+a^2 x^2\right )-6 e \log \left (c x^n\right ) \log \left (1+a^2 x^2\right )+\left (9 a^2 d n-3 e n\right ) \operatorname {PolyLog}\left (2,-a^2 x^2\right )}{36 a^3} \]

input
Integrate[(d + e*x^2)*ArcCot[a*x]*Log[c*x^n],x]
 
output
(-5*a^2*e*n*x^2 + 36*a^2*d*n*Log[1/(a*Sqrt[1 + 1/(a^2*x^2)]*x)] + 6*a^2*e* 
x^2*Log[c*x^n] - 4*a^3*x*ArcCot[a*x]*(n*(9*d + e*x^2) - 3*(3*d + e*x^2)*Lo 
g[c*x^n]) + 2*e*n*Log[1 + a^2*x^2] + 18*a^2*d*Log[c*x^n]*Log[1 + a^2*x^2] 
- 6*e*Log[c*x^n]*Log[1 + a^2*x^2] + (9*a^2*d*n - 3*e*n)*PolyLog[2, -(a^2*x 
^2)])/(36*a^3)
 
3.2.89.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 179, normalized size of antiderivative = 0.98, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2835, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^{-1}(a x) \left (d+e x^2\right ) \log \left (c x^n\right ) \, dx\)

\(\Big \downarrow \) 2835

\(\displaystyle -n \int \left (\frac {1}{3} e \cot ^{-1}(a x) x^2+\frac {e x}{6 a}+d \cot ^{-1}(a x)+\frac {\left (3 a^2 d-e\right ) \log \left (a^2 x^2+1\right )}{6 a^3 x}\right )dx+\frac {\left (3 a^2 d-e\right ) \log \left (a^2 x^2+1\right ) \log \left (c x^n\right )}{6 a^3}+d x \cot ^{-1}(a x) \log \left (c x^n\right )+\frac {1}{3} e x^3 \cot ^{-1}(a x) \log \left (c x^n\right )+\frac {e x^2 \log \left (c x^n\right )}{6 a}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\left (3 a^2 d-e\right ) \log \left (a^2 x^2+1\right ) \log \left (c x^n\right )}{6 a^3}-n \left (\frac {d \log \left (a^2 x^2+1\right )}{2 a}-\frac {\left (3 a^2 d-e\right ) \operatorname {PolyLog}\left (2,-a^2 x^2\right )}{12 a^3}-\frac {e \log \left (a^2 x^2+1\right )}{18 a^3}+d x \cot ^{-1}(a x)+\frac {1}{9} e x^3 \cot ^{-1}(a x)+\frac {5 e x^2}{36 a}\right )+d x \cot ^{-1}(a x) \log \left (c x^n\right )+\frac {1}{3} e x^3 \cot ^{-1}(a x) \log \left (c x^n\right )+\frac {e x^2 \log \left (c x^n\right )}{6 a}\)

input
Int[(d + e*x^2)*ArcCot[a*x]*Log[c*x^n],x]
 
output
(e*x^2*Log[c*x^n])/(6*a) + d*x*ArcCot[a*x]*Log[c*x^n] + (e*x^3*ArcCot[a*x] 
*Log[c*x^n])/3 + ((3*a^2*d - e)*Log[c*x^n]*Log[1 + a^2*x^2])/(6*a^3) - n*( 
(5*e*x^2)/(36*a) + d*x*ArcCot[a*x] + (e*x^3*ArcCot[a*x])/9 + (d*Log[1 + a^ 
2*x^2])/(2*a) - (e*Log[1 + a^2*x^2])/(18*a^3) - ((3*a^2*d - e)*PolyLog[2, 
-(a^2*x^2)])/(12*a^3))
 

3.2.89.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2835
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(Px_.)*(F_)[(d_.)*((e_.) + (f_.)* 
(x_))], x_Symbol] :> With[{u = IntHide[Px*F[d*(e + f*x)], x]}, Simp[(a + b* 
Log[c*x^n])   u, x] - Simp[b*n   Int[1/x   u, x], x]] /; FreeQ[{a, b, c, d, 
 e, f, n}, x] && PolynomialQ[Px, x] && MemberQ[{ArcTan, ArcCot, ArcTanh, Ar 
cCoth}, F]
 
3.2.89.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 80.62 (sec) , antiderivative size = 1633, normalized size of antiderivative = 8.97

method result size
risch \(\text {Expression too large to display}\) \(1633\)
default \(\text {Expression too large to display}\) \(147949\)

input
int((e*x^2+d)*arccot(a*x)*ln(c*x^n),x,method=_RETURNVERBOSE)
 
output
1/2*d/a*ln(x^n)*ln(1-I*a*x)-1/6*e/a^3*ln(1-I*a*x)*ln(x^n)-1/2*I*d*ln(x^n)* 
ln(1-I*a*x)*x-1/6*I*ln(x^n)*ln(1-I*a*x)*e*x^3+1/18*I*e*n*x^3*ln(a*x+I)+1/2 
*I*d*n*x*ln(a*x+I)-5/36*e*n*x^2/a-1/2*d*n*ln(a^2*x^2+1)/a-1/12*e*n*Pi*csgn 
(a*x+I)^3*ln(x)*x^3-1/4*e*n*Pi*csgn(a*x+I)^2*ln(x)*x^3-1/36*e*n*Pi*csgn(a* 
x+I)^2*csgn(I*(a*x+I))*x^3+1/36*e*n*Pi*csgn(a*x+I)*csgn(I*(a*x+I))*x^3-1/4 
*d*n*Pi*csgn(a*x+I)^3*ln(x)*x-1/4*d*n*Pi*csgn(a*x+I)^2*csgn(I*(a*x+I))*x-1 
/4*d*n*Pi*ln(x)*csgn(a*x-I)^3*x+3/4*d*n*Pi*ln(x)*csgn(a*x-I)^2*x-1/4*d*n*P 
i*csgn(a*x-I)^2*csgn(I*(a*x-I))*x-1/4*d*n*Pi*csgn(a*x-I)*csgn(I*(a*x-I))*x 
-1/12*e*n*Pi*ln(x)*csgn(a*x-I)^3*x^3+1/4*e*n*Pi*ln(x)*csgn(a*x-I)^2*x^3-1/ 
36*e*n*Pi*csgn(a*x-I)^2*csgn(I*(a*x-I))*x^3+(-1/4*I*Pi*csgn(I*c)*csgn(I*x^ 
n)*csgn(I*c*x^n)+1/4*I*Pi*csgn(I*c)*csgn(I*c*x^n)^2+1/4*I*Pi*csgn(I*x^n)*c 
sgn(I*c*x^n)^2-1/4*I*Pi*csgn(I*c*x^n)^3+1/2*ln(c))*(Pi*d*x+1/3*Pi*e*x^3+d/ 
a*((1+I*a*x)*ln(1+I*a*x)-1-I*a*x)+1/3*I*e*ln(1+I*a*x)*x^3-1/3*e/a^3*ln(1+I 
*a*x)+1/3*e/a*x^2+11/9*e/a^3+d/a*((1-I*a*x)*ln(1-I*a*x)-1+I*a*x)-1/3*I*e*l 
n(1-I*a*x)*x^3-1/3*e/a^3*ln(1-I*a*x))-d/a*ln(x^n)-1/36*e*n*Pi*csgn(a*x-I)* 
csgn(I*(a*x-I))*x^3-3/4*d*n*Pi*csgn(a*x+I)^2*ln(x)*x+1/4*d*n*Pi*csgn(a*x+I 
)*csgn(I*(a*x+I))*x+1/18*e*n*ln(a^2*x^2+1)/a^3+1/4*d*n*Pi*csgn(a*x-I)^3*x- 
3/4*d*n*Pi*csgn(a*x-I)^2*x-1/2*d*n/a*ln(-I*(-a*x+I))*ln(-I*a*x)+1/2*d*n/a* 
ln(-I*(-a*x+I))*ln(x)-1/6*e*n/a^3*ln(-I*(-a*x+I))*ln(x)+1/6*e*n/a^3*ln(-I* 
(-a*x+I))*ln(-I*a*x)+1/36*e*n*Pi*csgn(a*x-I)^3*x^3-1/12*e*n*Pi*csgn(a*x...
 
3.2.89.5 Fricas [F]

\[ \int \left (d+e x^2\right ) \cot ^{-1}(a x) \log \left (c x^n\right ) \, dx=\int { {\left (e x^{2} + d\right )} \operatorname {arccot}\left (a x\right ) \log \left (c x^{n}\right ) \,d x } \]

input
integrate((e*x^2+d)*arccot(a*x)*log(c*x^n),x, algorithm="fricas")
 
output
integral((e*x^2 + d)*arccot(a*x)*log(c*x^n), x)
 
3.2.89.6 Sympy [A] (verification not implemented)

Time = 40.04 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.27 \[ \int \left (d+e x^2\right ) \cot ^{-1}(a x) \log \left (c x^n\right ) \, dx=- d n \left (\begin {cases} \frac {\pi x}{2} & \text {for}\: a = 0 \\\begin {cases} x \operatorname {acot}{\left (a x \right )} + \frac {\log {\left (a^{2} x^{2} + 1 \right )}}{2 a} & \text {for}\: a \neq 0 \\\frac {\pi x}{2} & \text {otherwise} \end {cases} - \frac {\operatorname {Li}_{2}\left (a^{2} x^{2} e^{i \pi }\right )}{4 a} & \text {otherwise} \end {cases}\right ) + d \left (\begin {cases} \frac {\pi x}{2} & \text {for}\: a = 0 \\x \operatorname {acot}{\left (a x \right )} + \frac {\log {\left (a^{2} x^{2} + 1 \right )}}{2 a} & \text {otherwise} \end {cases}\right ) \log {\left (c x^{n} \right )} - \frac {e n x^{3} \operatorname {acot}{\left (a x \right )}}{9} + \frac {e x^{3} \log {\left (c x^{n} \right )} \operatorname {acot}{\left (a x \right )}}{3} - \frac {5 e n x^{2}}{36 a} + \frac {e n \left (\begin {cases} \frac {x^{2}}{2} & \text {for}\: a = 0 \\- \frac {\operatorname {Li}_{2}\left (a^{2} x^{2} e^{i \pi }\right )}{2 a^{2}} & \text {otherwise} \end {cases}\right )}{6 a} + \frac {e n \left (\begin {cases} x^{2} & \text {for}\: a^{2} = 0 \\\frac {\log {\left (a^{2} x^{2} + 1 \right )}}{a^{2}} & \text {otherwise} \end {cases}\right )}{18 a} + \frac {e x^{2} \log {\left (c x^{n} \right )}}{6 a} - \frac {e \left (\begin {cases} x^{2} & \text {for}\: a^{2} = 0 \\\frac {\log {\left (a^{2} x^{2} + 1 \right )}}{a^{2}} & \text {otherwise} \end {cases}\right ) \log {\left (c x^{n} \right )}}{6 a} \]

input
integrate((e*x**2+d)*acot(a*x)*ln(c*x**n),x)
 
output
-d*n*Piecewise((pi*x/2, Eq(a, 0)), (Piecewise((x*acot(a*x) + log(a**2*x**2 
 + 1)/(2*a), Ne(a, 0)), (pi*x/2, True)) - polylog(2, a**2*x**2*exp_polar(I 
*pi))/(4*a), True)) + d*Piecewise((pi*x/2, Eq(a, 0)), (x*acot(a*x) + log(a 
**2*x**2 + 1)/(2*a), True))*log(c*x**n) - e*n*x**3*acot(a*x)/9 + e*x**3*lo 
g(c*x**n)*acot(a*x)/3 - 5*e*n*x**2/(36*a) + e*n*Piecewise((x**2/2, Eq(a, 0 
)), (-polylog(2, a**2*x**2*exp_polar(I*pi))/(2*a**2), True))/(6*a) + e*n*P 
iecewise((x**2, Eq(a**2, 0)), (log(a**2*x**2 + 1)/a**2, True))/(18*a) + e* 
x**2*log(c*x**n)/(6*a) - e*Piecewise((x**2, Eq(a**2, 0)), (log(a**2*x**2 + 
 1)/a**2, True))*log(c*x**n)/(6*a)
 
3.2.89.7 Maxima [F]

\[ \int \left (d+e x^2\right ) \cot ^{-1}(a x) \log \left (c x^n\right ) \, dx=\int { {\left (e x^{2} + d\right )} \operatorname {arccot}\left (a x\right ) \log \left (c x^{n}\right ) \,d x } \]

input
integrate((e*x^2+d)*arccot(a*x)*log(c*x^n),x, algorithm="maxima")
 
output
1/36*(69984*a^4*e*n*integrate(1/11664*x^4*log(x)/(a^2*x^3 + x), x) + 20995 
2*a^4*d*n*integrate(1/11664*x^2*log(x)/(a^2*x^3 + x), x) + 1944*a^4*e*inte 
grate(1/216*(2*a*x^4*arctan2(1, a*x) + x^3*log(a^2*x^2 + 1))/(a^2*x^2 + 1) 
, x)*log(c) + 1944*a^4*d*integrate(1/216*(2*a*x^2*arctan2(1, a*x) + x*log( 
a^2*x^2 + 1))/(a^2*x^2 + 1), x)*log(c) + 1944*a^4*e*integrate(1/216*(2*a*x 
^4*arctan2(1, a*x) + x^3*log(a^2*x^2 + 1))*log(x^n)/(a^2*x^2 + 1), x) + 19 
44*a^4*d*integrate(1/216*(2*a*x^2*arctan2(1, a*x) + x*log(a^2*x^2 + 1))*lo 
g(x^n)/(a^2*x^2 + 1), x) - 9*(216*a*integrate(1/216*x*log(a^2*x^2 + 1)/(a^ 
2*x^2 + 1), x) - arctan(a*x)^2/a - 2*arctan(a*x)*arctan(1/(a*x))/a)*a^3*d* 
log(c) - 1944*a^3*e*integrate(1/216*(a*x^3*log(a^2*x^2 + 1) - 2*x^2*arctan 
2(1, a*x))/(a^2*x^2 + 1), x)*log(c) - 1944*a^3*e*integrate(1/216*(a*x^3*lo 
g(a^2*x^2 + 1) - 2*x^2*arctan2(1, a*x))*log(x^n)/(a^2*x^2 + 1), x) - 1944* 
a^3*d*integrate(1/216*(a*x*log(a^2*x^2 + 1) - 2*arctan2(1, a*x))*log(x^n)/ 
(a^2*x^2 + 1), x) - 2*(a^3*e*n*arctan2(1, a*x) - 3*a^3*e*arctan2(1, a*x)*l 
og(c))*x^3 - (a^2*e*n - 3*a^2*e*log(c))*x^2 - 18*(a^3*d*n*arctan2(1, a*x) 
- a^3*d*arctan2(1, a*x)*log(c))*x + (9*a^2*d*log(c) - (9*a^2*d - e)*n - 3* 
e*log(c))*log(a^2*x^2 + 1) + 6*(a^3*e*x^3*arctan2(1, a*x) + 3*a^3*d*x*arct 
an2(1, a*x))*log(x^n))/a^3
 
3.2.89.8 Giac [F]

\[ \int \left (d+e x^2\right ) \cot ^{-1}(a x) \log \left (c x^n\right ) \, dx=\int { {\left (e x^{2} + d\right )} \operatorname {arccot}\left (a x\right ) \log \left (c x^{n}\right ) \,d x } \]

input
integrate((e*x^2+d)*arccot(a*x)*log(c*x^n),x, algorithm="giac")
 
output
integrate((e*x^2 + d)*arccot(a*x)*log(c*x^n), x)
 
3.2.89.9 Mupad [F(-1)]

Timed out. \[ \int \left (d+e x^2\right ) \cot ^{-1}(a x) \log \left (c x^n\right ) \, dx=\int \ln \left (c\,x^n\right )\,\mathrm {acot}\left (a\,x\right )\,\left (e\,x^2+d\right ) \,d x \]

input
int(log(c*x^n)*acot(a*x)*(d + e*x^2),x)
 
output
int(log(c*x^n)*acot(a*x)*(d + e*x^2), x)